Search results for " 37C15"

showing 4 items of 4 documents

Seifert manifolds admitting partially hyperbolic diffeomorphisms

2017

We characterize which 3-dimensional Seifert manifolds admit transitive partially hyperbolic diffeomorphisms. In particular, a circle bundle over a higher-genus surface admits a transitive partially hyperbolic diffeomorphism if and only if it admits an Anosov flow.

Surface (mathematics)Pure mathematicsMathematics::Dynamical SystemsCircle bundle[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences[MATH.MATH-GN]Mathematics [math]/General Topology [math.GN]0103 physical sciencesFOS: MathematicsMSC: Primary: 37D30 37C15; Secondary: 57R30 55R05.Mathematics - Dynamical Systems0101 mathematicsMathematics::Symplectic GeometrySeifert spacesMathematics - General TopologyMathematicsTransitive relationAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Mathematics::Geometric TopologyFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphismAnalysis
researchProduct

The Fatou coordinate for parabolic Dulac germs

2017

We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale.

Pure mathematicsMonomialClass (set theory)Mathematics::Dynamical SystemsConstructive proofLogarithmTransseries[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]orbitsDulac germAsymptotic expansionDynamical Systems (math.DS)01 natural sciencesMSC: 37C05 34C07 30B10 30B12 39A06 34E05 37C10 37C1537C05 34C07 30B10 30B12 39A06 34E05 37C10 37C15Mathematics::Algebraic GeometryFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematicsDulac germ ; Fatou coordinate ; Embedding in a flow ; Asymptotic expansion ; TransseriesdiffeomorphismsMathematics::Complex VariablesApplied Mathematics010102 general mathematicsFatou coordinate010101 applied mathematicsclassificationnormal formsepsilon-neighborhoodsEmbedding in a flowAsymptotic expansionAnalysis
researchProduct

Partially hyperbolic diffeomorphisms with a uniformly compact center foliation: the quotient dynamics

2016

We show that a partially hyperbolic$C^{1}$-diffeomorphism$f:M\rightarrow M$with a uniformly compact$f$-invariant center foliation${\mathcal{F}}^{c}$is dynamically coherent. Further, the induced homeomorphism$F:M/{\mathcal{F}}^{c}\rightarrow M/{\mathcal{F}}^{c}$on the quotient space of the center foliation has the shadowing property, i.e. for every${\it\epsilon}>0$there exists${\it\delta}>0$such that every${\it\delta}$-pseudo-orbit of center leaves is${\it\epsilon}$-shadowed by an orbit of center leaves. Although the shadowing orbit is not necessarily unique, we prove the density of periodic center leaves inside the chain recurrent set of the quotient dynamics. Other interesting proper…

010101 applied mathematicsPure mathematicsMSC: 37D30 37C15Applied MathematicsGeneral Mathematics010102 general mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]0101 mathematics01 natural sciencesQuotientMathematics
researchProduct

Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence

2020

Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…

Pure mathematics37D30Similarity (geometry)Mathematics::Dynamical SystemsGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)dynamical coherenceMSC Primary: 37C15 37D3037C1501 natural sciencessymbols.namesake0103 physical sciencesFOS: MathematicsErgodic theoryMathematics - Dynamical Systems[MATH]Mathematics [math]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsConjecture010102 general mathematicsSurface (topology)Mathematics::Geometric Topologystable ergodicityMapping class groupFlow (mathematics)Poincaré conjecturesymbols010307 mathematical physicsGeometry and Topologypartially hyperbolic diffeomorphisms
researchProduct